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This article presents slight modifications to algorithms for in-core symmetric matrix 
multiplications in order to optimize the computational number of multiplications 
required. The use of the petite liste (PI) algorithm, a general procedure of treating spatial 
symmetry in molecular calculations, is extended to permutational symmetry in matrix 
multiplications. This implementation requires the same number of operations as a regu- 
lar matrix multiplication when the dimensions of original and transformed matrices are 
the same. However, when the transformed space dimension is smaller, this algorithm 
provides savings of up to a factor of two in the overall number of multiplications 
involved. Such a method can be viewed as an alternative demonstration to Saunders and 
van Lenthe's two-index transformation technique, who developed similar expressions 
through the decomposition of the symmetric matrix into its upper and lower triangular 
parts. The final equations obtained by these authors are the same as the ones shown here. 
However, the present method is supported by a solid theoretical framework, permuta- 
tional group theory, which makes it general and applicable over any permutational sym- 
metry available. 

1. I n t r o d u c t i o n  

Basis t ransformations and sub-space projections are regular operations 
employed in many  computat ional  algorithms. When dealing with symmetric  
matrices it is usual to employ permutat ional  symmetry, mainly with the purpose of  
memory  saving. In such a case, just the triangular part of the original and the final 
matrices are stored and calculated. Although this procedure saves nearly half  of  the 
memory  required, it does not reduce the number of  multiplications performed, 
since each element, prior to the calculation, restores all the others. These elements 
are then processed as if there were no symmetry. Strictly speaking, the gains in 
using permutat ional  symmetry are restricted to halving the number of  elements in 
these matrices. Here the use of  the pet i te  liste algorithm applied to the permuta-  
tional symmetry in matrix multiplications is discussed. 

T h e p e t i t e  liste algorithm is a well-known procedure of  treating spatial symmetry  
in ab initio molecular calculations. It is based on point group theory and is exten- 
sively reported in the literature [ 1-5]. In this methodology all the redundancy due to 

© J.C. Baltzer AG, Science Publishers 



142 E. Hollauer / The permutational symmetry in matrix multiplications 

the spatial symmetry is eliminated and a unique list of elements is collected under 
the name of  petite liste (PI). This reduced list has the property of  regenerating the 
whole set of elements under the effects of the projection operator. These elements 
are scaled by the equivalency number and all properties are evaluated as if there 
were no symmetry. After this preliminary step the "skeleton" property clearly 
shows an improper behavior under the effects of  symmetry operations since it was 
created on the basis of  a reduced list. The property may be corrected by a procedure, 
called "symmetrization step", that is performed through the application of a projec- 
tion operator belonging to the proper irreducible representation. In the case of sym- 
metric operators a fully symmetric projection operator, I~ ,  is used, but a general 
case might be treated through the pertinent irreducible representation X projector, 
as shown in (1): 

l~ x 1 =   xX(R)k. (1) 

In this equation ]Pa" is a projection operator belonging to the X-irreducible repre- 
sentation for a particular point group and X stands for its character under the action 
of  symmetry operation R. By G we mean the whole set of symmetry operations in 
the point group, which number no. For detailed information about the meaning of  
these variables we recommend the reading of one of the point group textbooks 
listed in references. 

Despite being a technique in use for almost twenty years, we are not aware of 
any work discussing the extension of this methodology to the permutational  sym- 
metry. This article shows an alternative way of performing this matrix transforma- 
tion that could possibly reduce the number of operations when the final 
t ransformed dimension is smaller than the original one. Russel and van Lenthe 
[6,7] get the credited for the originality of this algorithm since they obtained pre- 
viously the same final equations. Here, an alternative view of the same problem is 
presented which can easily be extended to the discussion of general permutat ional  
symmetries of tensor transformations of order two or greater. This is also the sim- 
plest practical example of the PI algorithm yet known. 

For  clarity's sake, in this article some notations of general use will be introduced. 
The values m • (m + 1)/2 will be denoted by the function H(m).  In order to set 
clearly all half-transformations performed Latin letters, i ,j ,  k and l will be used to 
denote the original space indices while the Greek letters c~,/3, ~/and ~ will refer to 
variables belonging to the transformed space. When referring to matrices, S will be 
used for the general n-rank tensor represented in the original space, P for a generic 
half-transformed matrix and T for the final m-rank transformed matrix. The corre- 
sponding elements will be written in lower case letters. The order of  the original 
matrices will be represented by N, while the variable M refers to the order of  the 
final t ransformed ones. 

The aim of  this article is to present a simple discussion of the mathematical  basis 
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of the permutational symmetry in matrix multiplications followed by some possible 
applications• 

2. The  permuta t iona l  symmetry 

Consider a regular unitary transformation given by eq. (2), where the original 
matrix S and the transformed matrix T show a regular permutational symmetry 
sij = sji and t ~  = t~ ,  and the matrix C represents the transformation between 
these spaces. 

T =- CT"SC.  (2) 

To study this kind of permutational symmetry the two-index transformation must 
be represented as a single supermatrix multiplication where all S matrix elements 
are collected as a column vector v multiplied by a supermatrix, whose elements are 
given by B(~,a) = ci~cj~. The result for the operation Bv generates u, th~ column- 
vector representation of T. 

u = l~v ,  (3 )  

t l l  ~ 

t12 

tlm 

t~¢ £i~£j/3 

lrn 1 

tm2 

tram ] 
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£1m£12 ¢1m£22 
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Cnm Cnrn j 
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Sn2 

~Snnj  G 

It may be observed that such a form, despite being computationally inadequate, 
will be useful as a guide to assess the PI  algorithm validity. Although this example is 
concerned with the two-index transformation, similar expressions might be 
obtained for the general case of an n-index transformation. It may be observed that 
the dimension of the v-space is n 2 while the dimension of the transformed u-space is 
m 2. Therefore, B will be, in general, a non-square matrix. 

The matrix B does not show any apparent symmetry since its rows and columns 
are related to different indexes. However, all the permutational features of eq. (1) 
lead to permutational symmetries among rows and columns in this matrix. For 
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instance, the permutat ion of  two rows is equivalent to the transposed permutat ions 
in the columns of  this matrix, i.e. lt~(~,ij) = It~(~#), as shown in eq. (4): 

]~([3a,ij) ~--- Ci~Cja ---~ CjotCi[3 = ]~(a13ji) " (4) 
One shall collect the unique elements into the petite liste, vp, of matrix elements. 
This Pl is defined such that, under the action of the projection operator, it regener- 
ates the whole list of elements present in the original matrix. The projection opera- 
tor representation, 1?, depends on the dimensions and permutational  symmetry of  
the elements but eq. (5) presents an acceptable representation for the vp-space per- 
mutat ional  projector of the two-index transformation of order two: 

va  = ~ v p ,  (5) 

e =  

where I[ denotes the identity and O the permutat ion operator, Osi2 = sji, in the repre- 
sentation defined by the ordered grande liste of the elements. The permutat ional  
group order is 2. This order is defined in such a way that S~ precedes S/7, i f / <  i' and 
j < j '  when i = i'. 

o o o 

0 1 0 " 0 =  0 1 0 
]I= 0 0 1 ' 1 0 0 " 

0 0 0 0 0 1 

The projection operator, I?, is represented below: /11, (ioo i)(tll) t12 / = 1/2 1/2 . t12 

t21 / 1/2 1/2 t21 

t22 ,/G 0 0 t22 p 

(6) 

(7) 

The expression shows that any arbitrary choice of the petite liste elements lead, 
under the effects of the projection operator, to the same grande liste of elements. 
The sets {&a, 2 • &2, O, $22} and {$11,0, 2 • &2, $22} are equally acceptable propo- 
sitions for the petite liste. The constituency factor multiplying the non-diagonal 
elements are remarkable in the sets above. Under  the effects of  the projection 
operator, all of them generate the proper grande liste of elements. Of course, the 
desired choice is to make the elements in vp assume null values as far as possible in 
order to save computat ion time. It is also interesting to note the net effect of the 
symmetrization step employed. Each element is the result of an average among the 
permuted equivalent elements. 

The petite liste algorithm is based on the symmetrization of  the transformed 
space, up, calculated over thepetite liste of two-index elements, v,,, i.e., 
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U G = ]~(m)up. (8) 

In this equation a superscript m to indicate the projection operator dimension was 
aggregated. The identity above can be transformed into a more convenient form by 
using the definition of the transformed matrix, up, presented in eq. (3): 

U G : ]~(m)up : ]~(m)]~Vp. (9) 

Comparing expression (9) with its equivalent definition for ua from the PI of ele- 
ments l? (")ve one has 

ua = I~vG = INP(")ve, (10) 

leading to the identity 

I?(m)~ = ~I? (") . (11 ) 

This equation is the matrix form of eq. (4), relating the action of the permutation 
operator in both spaces and is a consequence of the permutational symmetries 
observed in the original and the transformed matrices. Eq. (11) presents a simple 
demonstration for the use of permutational Pl. Therefore present algorithms might 
be modified by using just the unique scaled elements followed by a final symmetriza- 
tion step represented by eq. (8). As the final space might be of smaller dimensions, 
the overall cost could be improved by a factor close to two. This factor does not con- 
sider improvements related to vectorization or cache-oriented algorithms. In the 
next section some potential applications will be analyzed. 

3. A p p l i c a t i o n s  

3.1. TWO-INDEX TRANSFORMATIONS 

A regular unitary transformation given by eq. (2), where the original matrix S 
and the final transformed matrix T show the same permutational symmetry, is con- 
sidered. In order to have this transformation computationally optimized, the over- 
all sum must be broken into two smaller half-transformations as shown by eqs. (12) 
and(13): 

P = SC ,  (12) 

T = C r P .  (13) 

Algorithm 1 presents an ordinary computational program based on formulas (12) 
and (13). There was no attempt to exploit vectorization, cache memory or specific 
improved algorithms [9]. The computational cost of these two algorithms can be 
compared by counting the number of multiplications, N 2 .  M + M 2 ,  N / 2  
+ M  • N / 2  (roughly 3 • N3/2 if N = M) as shown in Algorithm 1. It is interesting 
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I n t e g e r  I , J , K , I A , I B , N , M  

Do I= I , N  
Do J= l , N  
Do I t I = I , M  
P ( I , I A ) = P ( I , I A ) + S ( J ,  I ) * C ( J  , I , t )  
end d o 
end do 

C N z* M 
C . . . .  Second t rans format ion  
C 

Do IA=I,M Upper p a r t  e v a l u a t i o n  
Do I B = I ,  I A  
VAL=O. 0 
Do K=l ,N 
VAL=VAL+P(K,IA)#C(K, IB) 
end d o 
T (  I A ,  I B )  =VAL 
end do 

C H ( M ) * N  
C 
C . . . .  T o t a l  
C N z *  M + M z~ N / 2  + M ~ N / 2  
C 

Algorithm 1. Fluxogram showing a sequence of FORTRAN commands for a two-index transforma- 
tion. On the right side we indicate the number of operations in each step. The initialization of variables 

was omitted. Comments were added. 

to notice that  the use of  permutational symmetry is restricted to the second trans- 
formation, allowing the half-calculation for the transformed matrix. The permuta-  
tional symmetry could be used in the original matrix as well by storing the upper 
part  of  the S matrix only. However, it is pointed out that this expedience does not  
lead to any improvement in the number of  multiplications performed since each ele- 
ment, prior to the calculation, must generate the equivalent elements. 

A second algorithm based on the use of the petite liste is presented. The matrix 
elements are scaled by its constituency number,  formally the number  of  equivalen- 
cies under permutational symmetry (all non-diagonal elements are multiplied by 
two!) and the unique elements are then processed normally, with no concern for 
regenerating the equivalent elements prior to the first transformation. The symme- 
trization step is performed at the end by averaging the permuted elements, eq. (1), 

The gains with this procedure can be compared to Algorithm 1 through the two 
half-transformations. In the first, the multiplication is performed over a restricted 
number  of  elements with a saving of H ( N )  • M operations. In the second half- 
t ransformation this method  shows a small overhead due to the need to create a full 
t ransformed matrix in spite of  the triangular part. The final number  of  multiplica- 
tions by the end of  the process is kept the same if the dimension of the final trans- 
formed space is the same as the original one, i.e. 3N2/2  + N2/2 .  However, it is 
important  to remark that, when the transformed space dimensions are smaller than 
the original number,  this algorithm can provide a speed-up close to 2 when com- 
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C 
C 
C 

I n t e g e r  I , J , K , I A , I B , N d e l t a ( I , J ) , N , M  

D o  I = 1 , N  
D o  J = l  , I 
S I J = S ( J  , I ) / ( N D E L T A (  I , J ) + I )  
D o  I A = 1  , M  
P (  I ,  I A )  = P  ( I ,  I A  ) + S I J . C ( J , I A )  
e n d  d o  
e n d  d o  

. . . .  S e c o n d  t r a n s f o r m a t t o n  

D o  I A = I  , M  
D o  I B = I  , M  
V A L = O . O  
D o  K = I  , N 
V A L = V A L  + P ( K ,  I A ) ~ C ( K ,  I B )  
e n d  d o  
T ( I A , I B  ) = V A L  
e n d  d o  

. . . .  S y m m e t r t z a t i o n  

D o  I A = I  , M  
D o  I B = I  . I A  
V A L = T (  I A , I B ) ÷  T ( I B ,  I A )  
T ( I A , I B ) = V A L  
T (  I B , I A ) = V A L  
e n d  d o  

. . . .  T o t a l  

D L f f  . S c a t t n g  

S L n g l e  M u l t L p l  ~ c a t L o n  

H ( N )  ~ M 

F u l l  T e v a l u a t t o n  

M 2 ~ N 

P e r m u t a t i o n a l  S y m ,  

N z #  M / 2  + N ~ M z + M ~ N / 2  

Algorithm 2. Fluxogram showing a sequence of FORTRAN statements of a two-index transforma- 
tion exploiting the permutational symmetry through the PI algorithm. On the right side we indicate 
the number of operations in each step. 1,4 and IB denote indexes of the transformed spaces. 

Initialization was omitted. Comments were added. 

pared to the regular transformation described in the first algorithm. Restricted 
sub-space use is rather frequent in many fields and coupling it with the present 
methodology would provide faster results and a solid theoretical background for 
matrix multiplications with arbitrary permutational symmetries. 

In Algorithm 2 slightly different scaling factors are adopted and all original ele- 
ments were halved in order to avoid a final multiplication by 1 /2 at the symmetriza- 
tion step. These scaling factors were suggested by Saunders and van Lenthe [7], who 
achieved similar equations working with configuration interaction calculations. 

3.2. F O U R - I N D E X  TRANSFORMATION [6,7] 

Most of the semi-empirical and the ab initio methods handle and process 
two-electron repulsion integrals, (i, j / k ,  I). Their number grows with the fourth 
power of  the basis function number and, due to this explosive scaling, much 
effort has been devoted to processing of existing symmetries in such integrals. 
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Concerning the permutational symmetries, these repulsion integrals show the 
following permutational symmetries, (i, j / k ,  l) = (i, j / l ,  k) = (j, i /k ,  l) = (j, i / l ,  
k) = (k, l / i ,  j ) =  (k, l / j ,  i ) =  (l, k / i ,  j ) =  (l, k / j ,  i), which, if considered, may 
provide a speed-up factor of close to eight in basis transformations of these 
properties. Besides the consideration of the permutational symmetries involved, 
the optimization of this transformation step is absolutely necessary since the 
straightforward multiplication would scale with the eighth power of the basis 
function. In fact, optimized algorithms exist in which the full transformation is 
performed through four half-transformations [6]. The overall cost of this algo- 
rithm comes down to nearly the fifth power of the same basis function number. 
Saunders and van Lenthe explored the permutational symmetry by the factoriza- 
tion of the S matrix into its upper and lower triangular parts. The method pro- 
vides an interesting exploitation of these symmetries. 

3.3. SUB-SPACE REDUCTION [ 10-12] 

In many fields, the iterative diagonalization of large symmetric matrices is a 
common numerical step. Among the methods dealing with iterative space reduc- 
tions, one may cite the coordinate relaxation based methods and those dealing with 
general Krylov based sequences. Such methods involve the iterative sub-space 
reduction from the original space to the one formed by some trial eigenvectors. 
Since this reduction involves the evaluation of matrix elements among iterative vec- 
tors, (vJAvj) ,  where the sub-space dimensions are often much smaller than the ori- 
ginal ones, it would be helpful to use permutational symmetries as presented in this 
article. Savings of up to a factor of two in the matricial multiplications could be 
obtained. 

4. Conclusions 

As a general conclusion, computer codes involving intensive matrix multiplica- 
tions of this kind might make use of the permutational symmetry as presented here. 
Work is in progress in order to provide routines for vectorization and in-cache 
oriented multiplications to be used in a new molecular computer program. This 
article has been written in the belief that the use of symmetry through the peti te  liste 
algorithm might be reasonably explored in other fields, for which historically such 
developments were not so decisive. 
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